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Abstract. To illustrate complex spatio-temporal effects which are possible in cellular reactions with a small
number of particles, we present Monte Carlo simulations of the formation of oscillatory spark-like patterns
in a model completely stochastic Ca+2 oscillator. Our analysis shows that in order to observe such patterns
the minimum average number of Ca+2 ions in the cytosol may be as low as about 50.

PACS. 05.10.Ln Monte Carlo methods – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 05.65.+b Self-organized systems – 87.17.-d Cellular structure and processes

1 Introduction

Chemical reactions in cells are usually described by em-
ploying the conventional mean-field (MF) kinetic equa-
tions based on the mass-action law [1]. This approach is
often robust especially in the cases when a kinetic pro-
cess under consideration exhibits well-defined steady-state
behaviour. Frequently, however, the kinetics of biological
processes occuring on subcellular, cellular or multi-cellular
levels are oscillatory. More specifically, the experiments in-
dicate that physiological rhythms are rarely strictly peri-
odic but rather fluctuate irregularly over time [2]. To anal-
yse such rhythms, one usually needs to take into account
fluctuations in one form or another. The conventional ap-
proach tackling this aspect of reaction kinetics is based
on complementing the MF reaction-diffusion equations by
stochastic white noise. The latter approach is however not
always applicable to cells, because the number of parti-
cles (molecules, atoms, or ions) participating in cellular
processes is often small. The cell behaviour may be de-
pendent on a few or even on a single particle which may
switch intracellular biochemical pathways [3]. The firm un-
derstanding of kinetic effects corresponding to this limit
is now lacking. The first simulations [4–6] addressing this
point treat temporal stochastic reaction schemes with no
concentration gradients. Monte Carlo (MC) simulations of
irregular intracellular oscillations with concentration gra-
dients have recently been performed in references [7,8],
but the number of reacting particles was there relatively
large. Our present study is focused on kinetically complex
spatio-temporal cellular processes occurring with a small
number of reactants and regulators.
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Regulation of cell activity often involves positive and
negative feedbacks between reactants and/or regulators
and accordingly may result in periodic or irregular kinetic
oscillations. The time scale of oscillations may be com-
parable with that characterizing reactant diffusion in a
cell. Under such conditions, kinetic oscillations may be ac-
companied by pattern formation inside individual cells [9]
(for example, glycolytic NAD(P)H waves have recently
been observed in neutrophils [10]; another good example
is Ca+2 waves monitored in Xenopus oocytes [11]). One of
the questions naturally arising in connection with cellular
spatio-temporal patterns is: How low may be the minimum
average number of reactants in the cell or cellular compart-
ments in order to observe this phenomenon? Referring to
the fluctuation theory or, specifically, to the Poissonian
distribution [12], one can argue that the very term “os-
cillations” becomes poorly defined if the number of reac-
tants is lower than 30, because in this limit oscillations can
hardly be distinguished from fluctuations. What kind of
spatio-temporal patterns we may really have if the num-
ber of reactants is about or slightly larger than 30 remains
however unclear. To address this question, we present MC
simulations of oscillatory cellular patterns formed by a
small number of particles.

2 Model

As an example, we construct and treat a completely
stochastic model of the cellular Ca+2 oscillator. The un-
derstanding of Ca+2 oscillations is of interest from the
practical point of view, because Ca+2 plays an impor-
tant role in regulation of cell metabolism. From the the-
oretical viewpoint, this case is attractive, because despite
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Fig. 1. (a) Elongated cell (white colour) on the lattice. The sites near the corners (black colour) do not belong to the cell.
Ca+2 is supplied from the cytosol to ER primarily via the bottom, top and left ER-cytosol boundaries (solid lines). The right
boundary (dashed line) contains channels for the Ca+2 exchange between the cytosol and ER. The filled triangle indicates
location of the receptor responsible for R production. (b) Fragment of the ER-cytosol boundary with channels. The circles and
diamonds show the sites belonging to the cytosol and ER, respectively. The sites mimicking the channels are marked by the
plus signs (Ca+2 ions are allowed to cross the boundary via these sites). The filled circles represent the regulatory sites binding
reversibly Ca+2 or R particles.

the complexity and diversity of cellular biochemical path-
ways in different cells there seem to exist a few general
principles behind the control of Ca+2 concentration (see
the review [9] and recent experiments [13] and/or sim-
ulations [14] based on the MF approximation or com-
bining the MF approach with stochastic elements). (i)
Oscillations occur primarily during exchange of Ca+2

between the cytosol and endoplasmic reticulum (ER) (the
Ca+2 concentration in the cytosol is much lower than
that in ER). (ii) Calcium release from ER is mediated
by the membrane channels organized spatially in clus-
ters. This process is autocatalytic (positive feedback), i.e.,
its rate increases with increasing Ca+2 concentration in
the cytosol. (iii) The channel-mediated Ca+2 transport is
regulated by 1,4,5-trisphosphate or another regulator, R,
which may be deactivated by Ca+2 or by other species
formed due to the Ca+2 release (negative feedback). (iv)
The Ca+2 supply from the cytosol to ER occurs primarily
with participation of the Ca+2 ATP-pumps.

Realization of principles (i–iv) depends on the system
under consideration. Taking into account the complexity
and diversity of cellular biochemical systems, we have no
ambition to describe in detail any specific system. Our
goal is rather to construct a generic stochastic model fo-
cused on oscillations with a small number of Ca+2 ions.
In our 2D MC simulations, the elongated cell is repre-
sented by an array of sites on a (300× 200) square lattice
(Fig. 1a). Each site can be either vacant or occupied by
Ca+2 or R. ER is mimicked by a (101 × 101) sublattice
located on the left side of the cell. 51 channels mediat-
ing the Ca+2 transport are formed by the sites on the
right boundary of the sublattice as shown in detail in Fig-
ure 1b. The other 50 sites on the right boundary are able
to bind reversibly Ca+2 or R particles. The bound species

regulate the Ca+2 transport through the channels. The
ATP-pumps are assumed to be located at random on the
bottom, top and left ER-cytosol boundaries. In this case,
there is no need to describe them explicitly. Instead, we
prescribe to the bottom, top and left ER-cytosol bound-
ary sites an effective probability of Ca+2 penetration from
the cytosol to ER (this process is considered to be locally
irreversible). Diffusion of Ca+2 and R particles occurs via
jumps to nearest-neighbour (nn) vacant site. Deactivation
of R particles is described as the R+Ca+2 → P+Ca+2 re-
action between nn Ca+2 and R particles (in reality, R may
be deactivated by other species formed due to the Ca+2

release, but this detail is not crucial for our conclusions).
P particles are removed from the lattice immediately af-
ter reaction events. In addition, we introduce a receptor
responsible for R production. The receptor is represented
by one of the sites on the external boundary.

3 Algorithm of simulations

In MC simulations, the probabilities of elementary steps
should be dimensionless. Practically, this means that the
rate constants of various steps have to be normalized to
the rate constant of the fastest step so that the probability
of this step is equal to unity [15]. In our simulations, the
fastest processes are considered to be Ca+2 and R diffu-
sion. The probabilities of Ca+2 and R jumps to nn vacant
sites are therefore set equal to unity (in reality, the rates
of diffusion of these species are of course different, and this
detail could be incorporated into the simulations, but it
does not change the conclusions). The probabilities of the
other steps are chosen as described below.

The algorithm of our simulations consists of trials to
realize one of the elementary processes in the cell. A site
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(site 1) belonging to the cell is chosen at random. Then,
depending on its location and local arrangement of parti-
cles, there are three options:

(1) If site 1 is vacant and does not represent the recep-
tor, the trial ends. The vacant receptor site is occupied
by R with the probability prec < 1 (this step mimics R
production).

(2) If site 1 is occupied by Ca+2, one of the nn site
(site 2) is selected at random. If site 2 is occupied or does
not belong to the cell, the trial ends. If site 2 is vacant, the
events depend on location of sites 1 and 2 as follows. (i) If
both sites are in ER or if both sites are in the cytosol and
do not belong to the right ER-cytosol boundary, Ca+2

jumps from site 1 to site 2 with unit probability. (ii) If
sites 1 and 2 form the bottom, top and left ER-cytosol
boundary (this means that one of them belongs to the
cytosol and another one to ER), Ca+2 jumps from site 1
to site 2 with the probability ppum < 1 provided that site
1 is in the cytosol (this step mimics the performance of the
Ca2+ ATP-pumps). If site 1 belongs to ER, the trial ends.
(iii) If sites 1 and 2 form the right ER-cytosol boundary,
Ca+2 jumps from one site to another with the probability
pch < 1 provided that the sites form a channel. The jump
is realized if the two nn (with respect to the channel)
regulatory sites are occupied by Ca+2 or if at least one
of these sites is occupied by R. If sites 1 and 2 do not
form a channel, the trial ends. (iv) If sites 1 and 2 belong
to the cytosol and one of them is regulatory, Ca+2 jumps
from site 1 to site 2 with the probability pCa

a < 1 provided
that site 2 is regulatory or with the probability pCa

b < 1
provided that site 1 is regulatory (to take into account
that the regulatory sites bind Ca+2, we use pCa

b � pCa
a ).

(3) If site 1 is occupied by R, one of the nn site (site 2)
is chosen at random. If site 2 is occupied by R, or be-
longs to CR, or is outside the cell, the trial ends. If site 2
is occupied by Ca+2, R is removed from site 1 with the
probability pdea (this step mimics R deactivation). If site 2
is vacant, the events depend on whether one of the sites is
regulatory or not. (i) If both sites are ordinary, R jumps
from site 1 to site 2 with unit probability. (ii) If one of
the sites is regulatory, R jumps from site 1 to site 2 with
the probability pR

a < 1 provided that site 2 is regulatory
or with the probability pR

b < 1 provided that site 1 is reg-
ulatory (in analogy with the rules for Ca+2, we employ
pR
b � pR

a ).
Initially (at t = 0), Ca+2 ions are distributed in the

cell at random with the average site occupancy pav � 1.
In addition, we add a few (3–20) R particles on the sub-
lattice representing the cytosol. Then, after each trial, the
MC time is incremented by ∆tMC = | ln(ξ)|/Ns, where
ξ ≤ 1 is a random number, and Ns the number of sites on
the lattice representing the cell. On the average, we have
〈| ln(ξ)|〉 = 1. Thus, ∆tMC = 1 corresponds to one trial
per site or, in other words, to one MS step (MCS). Taking
into account that the probabilities of Ca+2 and R jumps
to nn vacant sites are considered to be equal to unity, we
may also conclude that one MCS corresponds in reality
to ∆t = a2/4D, where a is the lattice spacing and D the
Ca+2 or R diffusion coefficient.
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Fig. 2. Total numbers of (a) Ca+2 ions and (b) R particles in
the cytosol and numbers of (c) Ca+2 ions and (d) R particles
in regulatory sites on the ER-cytosol boundary as a function of
time for prec = 0.01, ppum = 0.1, pch = 0.2, pCa

a = 1, pCa
b = 0.1,

pR
a = 0.1, pR

b = 0.001, pdea = 1, and pav = 0.02. The data
presented demonstrate the established asymptotic regime of
kinetic oscillations. The transient stage (at t < 2 × 105 MCS)
is not shown. The interval between the data points is 103 MCS.
The lattice snapshots corresponding to the points indicated by
open circles [panel (a)] are exhibited below in Figure 3.

4 Results of simulations

During the simulations, we monitored the total numbers of
Ca+2 and R particles in the cytosol and also the numbers
of these particles in regulatory sites. Varying the kinetic
parameters in a wide range, we have found that the model
described easily exhibits well-developed irregular spark-
like spatio-temporal oscillations of Ca+2 ions in the cytosol
if the average value of the number of these ions is larger
or about 40. The average number of R particles may be
as low as about 20. An example of such oscillations is
shown in Figure 2. In this case, the average number and
amplitude of oscillations of the number of Ca+2 ions in the
cytosol are about 35 and 20, respectively. For comparison,
it is appropriate to note that according to the Poissonian
distribution the amplitude of fluctuations of this number
is expected to be lower than 10.

Comparing panels (a) and (b) of Figure 2, one can
notice that due to the negative feedback between Ca+2

and R the concentrations of these species oscillate in the
anti-phase regime. The rapid spark-like increase of Ca+2

concentration starts when the number of R particles is
relatively high at the moment when one of these parti-
cles reaches a regulatory site (cf. panels (a) and (c) of
Fig. 2). Then, with increasing Ca+2 concentration, the
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(b)  t=685000 MCS

Fig. 3. Typical snapshots of the lattice for the MC run, shown in Figure 2, in the cases when the number of Ca+2 ions in the
cytosol is (a) minimum, (b) between minimum and maximum, (c) maximum, and (d) between maximum and minimum. Small
and somewhat larger filled circles represent Ca+2 ions in the ER and cytosol, respectively. Open circles indicate R particles. To
increase resolution, the size of circles is used to be larger than the site size. For this reason, the concentration of Ca+2 ions in
ER appears to be higher than it might be in the case when the sizes matched each other.

number of R particles rapidly decreases due to deactiva-
tion by Ca+2. The growth of Ca+2 concentration is how-
ever maintained for a while due to autocatalysis (cf. pan-
els a and c of Fig. 2). This process is however eventually
terminated due to relatively slow diffusion of Ca+2 ions
to regions located far from the channels and pumping
them back to CR via the bottom, top and left ER-cytosol
boundaries. All these events are illustrated in Figure 3.

The effect of some of the model parameters on irregu-
lar oscillations of the number of Ca2+ ions in the cytosol
is demonstrated in Figures 4, 5. In particular, Figure 4
shows what we may have with further decrease of the av-
erage number of Ca+2 ions. For example, increasing the
effective probability of Ca+2 penetration from the cytosol
to ER via the bottom, top and left ER-cytosol boundary
sites (from 0.1 to 0.5) results in reduction of the average
number of Ca+2 ions down to about 25 (Fig. 4b). Despite
the small number of Ca+2 ions, the spark-like features
of the kinetics are still well manifested, because they are
connected first of all with the interplay of the processes
near the array of channels on the right side of ER. If one
the other hand one decreases the probability of jumps via
open channels (from 0.2 to 0.1), the average number of
Ca+2 ions decreases down to about 25 as well (Fig. 4c),

but now the amplitude of the oscillations is smaller (nearly
the same as expected on the basis of the Poissonian distri-
bution) and the shape of peaks is almost symmetric. Such
kinetic behavior can be classified rather as fluctuations.

Figure 5 exhibits the kinetics with a higher average
number of Ca+2 ions. In particular, Figure 5b corresponds
to the case when the probability of R deactivation is de-
creased from 1 to 0.1. This results in increasing number
of R particles. The average number of Ca+2 ions increases
as well, but the amplitude of Ca+2 oscillations remains
nearly the same (Figs. 5 a, b).

Figure 5c shows that spark-like oscillations are possible
even if R production and degradation is eliminated and
hence there is no negative feedback between R and Ca+2.

Finally, it makes sense to compare quantitatively some
predictions of our model with experiment. In our simula-
tions, we employ dimensionless probabilities. To avoid a
lengthy discussion of the relationship between these prob-
abilities and real rate constants, we may use dimensionless
values characterizing sparks. Specifically, it is of interest
to calculate the dimensionless parameter Dτ/ρ2, where D
is the Ca+2 diffusion coefficient, and τ and ρ are the spark
time and length scales. In our work, D = 0.25, τ � 5×104,
ρ � 100, and accordingly Dτ/ρ2 � 1. In recent experi-
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Fig. 4. Total numbers of Ca+2 ions in the cytosol as a function
of time for (a) the run, shown in Figure 2, and [(b) and (c)]
the runs with the same parameters as in Figure 2 except (b)
ppum = 0.5 and (c) pch = 0.1.

ment [13], τ � 10−2 s and ρ � 5 × 10−4 cm. Combining
the latter values with D � 2 × 10−6 cm2/c [16], one gets
Dτ/ρ2 � 10−1. The experimental value is seen to be some-
what smaller, but the difference is acceptable especially if
one takes into account that we did not use any fitting
parameters and had no goal to describe in detail specific
experiments.
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Fig. 5. Total numbers of Ca+2 ions in the cytosol as a function
of time for (a) the run shown in Figure 2, (b) the run with the
same parameters as in Figure 2 except pdea = 0.1, and (c)
the run with three R particles and the same parameters as in
Figure 2 except prec = 0 and pdea = 0 (in this case, there is no
R generation and deactivation).

5 Conclusion

We have constructed the first completely stochastic model
of intracellular spark-like Ca+2 oscillations. The model al-
lows one to explicitly simulate the effect of various factors
on oscillations. Our present curiosity-driven simulations
were focused on the case when the number of particles
participating in oscillations is small. The results obtained
demonstrate that oscillatory cellular spatio-temporal pat-
terns may in principle be observed when the average num-
ber of reactants in the cell or cellular compartments is as
low as about 50. We believe that this general conclusion
may be useful for understanding and interpretation of var-
ious irregular physiological rhythms and/or such processes
as neuronal dynamics.

The author thanks B. Kasemo for useful discussions.
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